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A drop of ink falls from my pen. .  . It comes to earth, I know 
not when 
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Department of Mathematics, Manchester University, Manchester M13 9PL, UK 

Received 5 December 1984, in final fo:m 8 May 1985 

Abstract. We obtain, for a Brownian particle in a uniform force field, the mean and 
asymptotic first-passage times as functions of the particle’s initial position and velocity, 
with the recurrence times given as a special case. We discuss the region of phase space 
for which the diffusion model of Brownian motion provides an adequate approximation, 
and conclude that there is no possibility of obtaining the recurrence times within that model. 

We find that the nature of the boundary-value problem is profoundly altered when 
the motion is treated as a process in phase rather than configuration space, because the 
time-development operator is then parabolic rather than elliptic. We argue that such a 
change in the treatment of Brownian motion places it within the sphere of transport theory 
rather than diffusion theory, and that, consequently, results such as ours have relevance 
to the study of phenomena such as radiative transfer and neutron transport. 

1. Historical introduction 

The mathematical theory of Brownian motion was established, by Einstein and 
Smoluchowski independently, in 1905 and 1906, though some important results had 
already been obtained more than a decade previously by Rayleigh. However, as 
emphasised by Nelson [ 11 the theory remained essentially descriptive, or kinematic, 
until 1930, when Uhlenbeck and Ornstein [2]+, starting with a dynamical equation of 
motion, that is, one involving the second time derivative of the particle’s position, 
obtained the master equation for the distribution of the particle in phase space. Their 
result was generalised to Brownian motion in a force field by Kramers [3]. Solution 
of this master, or Fokker-Planck, equation gives the probability of transition from an 
initial point in phase space to any region of the space after a time t. As indicated by 
Rice [4], it also gives a formal expression for the first-passage-time distribution. 
However, Rice’s expression is a series of increasingly complicated multiple integrals, 
and, mercifully, nobody has attempted to use it quantitatively. Since 1945, when Wang 
and Uhlenbeck [5] published their review article, little progress was made on the 
solution of the Kramers equation: Interest has recently revived, and some approximate 
solutions for the time-independent problem have been given by Titulaer and co-workers 
[6-81. However, no progress has been made beyond Rice’s expression, in inverting 
the transition probabilities to obtain first-passage times. 

For this reason alone, our calculation of mean first-passage times for the Uhlenbeck- 
Ornstein process in a uniform field should be of interest, but we believe our results 
have a greater significance than this. 

+ References [2, 4, 5, 91 are reprinted in [2a]. 
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The stochastic differential equation for the process is 

mx = g ( x )  - p i +  F (  t ) ,  

( F (  t ) F (  f + 7)) = K (  7) .  

(1.1) 

where F ( t )  is a stochastic force with mean value zero and autocorrelation 

(1.2) 

The brackets denote ensemble averaging or, if the process is ergodic, time averaging. 
If we approximate this stochastic force by a white noise, so that 

K ( ~ ) = 2 p k T 6 ( ~ ) ,  (1.3) 

then the Fokker-Planck equation for the phase-space distribution W ( x ,  U ;  t ) ( u  = i) is 

g(x) aw aw aw pkTa2W -+--(uW)---- p a 
at m2  au2 m au m au ax 

U-. - (1.4) 

We express t in units of / T i m  and x in units of p-’(mkT)’”, so that this equation 
takes the non-dimensional form 

aw a2w a aW aW 
at au- au au ax 

- , +-(uW)+2a(x ) - -u - ,  (1.5) 

where 

a ( x ) =  - ip - ’ (m/kT) i ’2g (x ) .  (1.6) 

Most discussions of Brownian motion have been based on the diffusion approxima- 
tion, in which the inertia term in (1.1) is neglected 

1 = p - ’ g ( x )  + @-IF(  1 ) .  (1.7) 

In this case the non-dimensionalised Fokker-Planck equation is 

aw a2w a 
a t  ax2 ax 

- -I-- [ 2 a ( x )  W ] .  

The distribution of first-passage times may then, following Smoluchowski [9], be 
obtained by introducing an  ‘absorbing barrier’ at x = 0, with the boundary condition 

W(O+,  t ) = 0 .  (1.9) 

This approximation has been very fruitful. The number of independent variables 
has been reduced from three to two, and after Laplace transforming with respect to t, 
these reduce to the single variable x. The resulting ordinary differential equation may 
be solved for a large family of force fields [lo]. Furthermore, for multidimensional 
processes the time-development operatort is always elliptic, which enables us to recast 
many problems about the first-passage times as classical Dirichlet-type boundary-value 
problems [ 113. 

We believe, however, that probability theorists have concentrated their efforts too 
exclusively on this approximation. Within it one can obtain results only for those 
features of the motion which are (approximately) independent of the particle’s initial 
velocity. Now, as Kramers [3] proved, at least informally, for large p the particle’s 
memory of its initial velocity is a good deal shorter than its memory of its initial 

+ In an equation of the form dU’/dt = L W, L will be referred to as ‘the time-development operator’. It will 
be termed ’parabolic’ or ‘elliptic’ depending on whether the equation L W = 0 is parabolic or elliptic. 
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position. It is therefore reasonable to expect that the first-passage times will be correctly 
given by the diffusion model, provided the initial position lies outside a certain region 
close to the absorbing barrier, and provided the initial velocity is not too large. Our 
more exact theory will indicate the orders of magnitude of such boundary regions. 

When we come to the recurrence time, however, the diffusion model predicts 
incorrectly that, with probability one, it takes the value zero. Since Smoluchowski’s 
original article [9] there has been almost no discussion of the recurrence time, except 
for Chandrasekhar’s review article [12], and it is now known [13] that both of these 
are based on incorrect arguments. Ours is, therefore, the first reliable value for the 
mean recurrence time. 

The boundary condition for an absorbing barrier in the Kramers equation (1.5) 
was given by Wang and Uhlenbeck [5] as 

W(O+, U ;  t )  = o  u > o .  (1.10) 

They proposed this rather hesitantly (‘We feel sure that this means the condition, . ,’), 
presumably because it seems to apply to only half of the boundary in phase space. 
Can one be sure that this condition, together with conditions of finiteness on the 
infinitely distant boundaries, will guarantee a unique solution in the half-space x > O ?  
In the following sections we shall see that this question can now be answered affirma- 
tively. 

Without going into details at this stage, we note that the reason why (1.10) is 
adequate to guarantee such a unique solution is that the time-development operator, 
because it contains no x derivatives beyond the first, is parabolic. This is also the 
feature which is responsible for the different memory time scales of x and U. Broadly 
speaking such behaviour is also characteristic of the linear transport processes [ 141 
studied in connection with radiative transfer and neutron transport. Although in these 
processes the second derivative with respect to U is replaced by an integral operator, 
this parabolic nature of the time-development operator is again of crucial importance, 
and poses certain questions about half-range completeness of a family of eigenfunctions 
[15]. For the time-independent force-free case of equation (1.5), the half-range com- 
pleteness of the eigenfunctions was proved by Beak and Protopopescu [16], and it 
seems very likely that their method can be applied to our problem. 

2. The first-passage-time density 

We consider the case of a uniform force field, for which the Fokker-Planck equation 
is 

aw a2w a aw 
a t  a u 2  a u  d X  

- +- [ ( U  + 2 a )  W ]  - u- x > o ,  t > 0 .  

In this article we shall consider in particular the case where the field attracts the particle 
towards the absorbing barrier, so that a is a positive constant. The transition probability 
for a particle initially at ( y ,  U )  satisfies (2.1) with the boundary conditions 

W(x, u ; 0 ) = 6 ( x - y ) S ( u - u ) ,  

W(O+, U ;  t ) = O  U > 0, 

w+o as U-+ fa and as x + Soc. 
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We denote this Green function by W ( x ,  U ;  y ,  U ;  t ) .  Then the first-passage-time density 
is 

Y O  

@( y ,  U ;  t ) = - J U W( O + , U ;  y ,  U ;  t )  d u. (2.5) 
--CO 

It is possible to find W by using the methods we shall describe in the next section, 
but it is somewhat easier to find @ directly. This is because W satisfies the backward 
Fokker-Planck, or Kolmogorov [ 111  equation, and hence so does @, that is to say 

y > o ,  t>0.  
a@ a@ 

( u + 2 a )  -+ u- 
a@ a2@ 
a t  au2 au ay 
_--- - 

@ also satisfies the boundary and finiteness conditions 

0 ( y ,  0; 0 + ) = 0, (2.7) 

lof @( y ,  U ;  t ‘ )  dt‘+ 1 asy+O u < o ,  t > 0 ,  (2.8) 

O s  lo‘ @ ( y ,  U ;  t ’ )  d t ’ G  1 ,  (2.9) 

@ + O  as y +  +Co. (2.10) 

((2.8) says that a particle, released near to the absorbing barrier, is certain to be 
absorbed immediately.) 

The Laplace transform 6( y, U ;  p )  satisfies 

6”, - (u+2a)6 , ,  + u 6 y  - p 6  = 0, (2.11) 

6(0+ ,  U ;  p )  = 1 Y<O, (2.12) 

os15,1s1 for R p  2 0, (2.13) 

6 - 0  as y + +Co. (2.14) 

Condition (2.13) originates in the probabilistic constraints 

@ ( Y ,  0 ;  t ) S O ,  Joffi@(y, u ;  t )  d t s  1 all y, U. 

In deriving the analytic solution in 0 3 a very much weaker condition was imposed on 
6, as IuI + CO, in order to ensure a unique solution. Checks have, however, been made 
on the numerical solution in § 4 to establish that it does, in fact, satisfy (2.13). A 
separation of the variables gives a set of functions satisfying (2 .11)  and (2.14), 
namely 

(2.15) @ f l  ( y, U ;  P) = exp[(a - 4 n ) Y  + a u  + u2/41~,(2q,  + U), 
where 0, is a parabolic cylinder function (see appendix l ) ,  and 

qn = ( n  + c ~ ~ + p ) ” ~ .  (2.16) 

It is, therefore, natural to seek a solution for 6 as a linear combination of @,, satisfying 
the remaining condition (2.12). We shall use the notation 

f;(u) = (n!)-’” exp(-au)@,(o, U ;  p )  = (n!)-1’2 exp(u2/4)~,(2q, ,  + U). (2.17) 
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The separation of variables in (2.15) is analogous to that of Burschka and Titulaer 
[ 6 ]  for the time-independent case of equation (2.1). Their result generalised that of 
Pagani [17], who obtained the corresponding formula for the case LY =0,  in which 
there is no force field. It was proved by Beak and Protopopescu [16] that Pagani’s 
functions form a complete set over the half-range U > 0. It seems very likely that their 
method will show that the set of functions f;(u) spans the space of functions f(u), 
defined in v < O ,  in which the inner product is given by 

( A  g )  = j : / ( u ) g ( v ) ( - u )  exp(-iu2) do. (2.18) 

The proof of Beak and Protopopescu is one of pure existence, using functional analysis, 
and does not lead to a determination of the coefficients g ,  in the expansion of an 
arbitrary function g ( u )  as the series 

(2.19) 

Our method gives explicitly a set of functions F , ( u )  such that 

( F i ,  .IT?) = 0 for m # n, (2.20) 

and determines the coefficients g ,  in (2.19). 

3. Analytical solution 

The substitution 

where 
7 = P + f f 2 ,  (3.2) 

converts equation (2.11) into 

+uc - + U& - r4 = 0. (3.3) 

This is a parabolic equation with characteristics y = constant. The direction of evolution 
of the solution is that of increasing y when U < 0, but decreasing y when U > 0. Hence 
it is appropriate to look for a solution of (3.3) in y > 0, subject to the initial condition 

4(0+, 0 ;  7) = g ( u ;  7) (3.4) 

d Y ,  U ;  7) =O(exP(Al~l))  as U +  fa (3.5) 

for U < 0, 

where g ( u ;  T )  is a given function, together with the boundary conditions 

for some constant A. We also need a condition as y-00 in u > O ,  and so we further 
assume that 

4 ( y ,  0 ;  7 ) + 0  as y + a .  (3.6) 

g( v ;  7)  = exp( -au) 

The boundary condition (2.12) corresponds to 

for U < 0, 

but it is useful to consider also the general case. 
(3 .7)  
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The method of solution is to split the region y > 0 along the line U = 0. Suppose that 

M Y ,  0;  7)  = CL(y; 7) .  (3.8) 

Then the solution of (3.3), (3.4) and (3.5) in u s  0 is of the form 

4 ( y ,  U ;  Iox d - w ;  ~ ) 4 l ( y ,  U ;  7, w) dw 

(3.9) 

Here &( y, U )  and &( y ,  U )  are solutions of (3.3) and (3.5) in u s  0, such that 

dq(0 + , U )  = 6 ( u  + w) U < O ,  d,L(Y,  0) = 0, (3.10) 

and 

42(0+ 5 U )  = 0 v < o ,  4 * L ( Y ,  0) = 6 ( Y ) .  (3.11) 

The solution of (3.3), (3.5) and (3.6) in U 3 0 is then 

$( z ; T)C$>( z - y ,  - U ; T)  dz. (3.12) 

The function +( y ;  7)  is determined by the condition that @ ( y ,  U ;  T )  must be 
continuous at U = 0. Hence, from (3.9) and (3.121, 

JO= 4 2 ( / v - z / , 0 ;  T ) $ ( z ;  7)  d z =  Oiy: 7) for y > 0, (3.13) 

where 

O ( y ;  T )  = - g(-w)d,(j*, 0 ;  T, w) dw. 1: (3.14) 

Equation (3.13) is an integral equation of the Wiener-Hopf type for $ ( y ;  7) .  When 
$ ( y ;  T)  is known, the solution d ( y ,  U; T )  is given by (3.9) and (3.12). 

We define Laplace transforms with respect to y by 

(3.15) 

and Fourier transforms by 
X 

F { u ( y ) l =  1 u ( y )  exp(-isg) dy 

= u'iis) + G I (  -is), 

- I  

(3.16) 

where 

U l ( Y )  = u ( - - y ) .  (3.17) 

U )  are easily obtained by transforming equation The transforms 6 1 ( q ,  U)  and 
(3.3) and using the boundary conditions. In particular, we find that 

&(q,  0) = -w e x p ( - i w 2 ) ~ , ( 2 q +  w ) / ~ : ( 2 q ) ,  (3.18) 
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(3.19) 

where 
U = 4‘ - T. 

The solution of the integral equation (3.13) is found by the standard method as 
follows. Let 

x ( - Y ) =  ~ ~ ( I Y - z I ,  0 ) 4 ( ~ )  d z  for y < 0. (3.20) 5: 
Then the Fourier transform of equations (3.13) and (3.20) combined is 

K(s )$ ( i s )  = i ( i s ) + i ( - i s ) ,  (3.21) 

where 

~ ( s )  = &(is, 0) + &(-is, 0 )  

(3.22) 

and now 

v = -s- - 7. (3.23) 

The result (3.22) is obtained from (3.19) with the use of the Wronskian relation (A1.4) 
for the parabolic cylinder functions. 

Suppose that 

K ( s )  = K , ( s ) K - ( s ) ,  (3.24) 

where K+( s)  and K-(  s )  are functions that are regular and non-zero in upper and lower 
half-planes respectively, and that 

$ ( i s ) /K+(s )  = L ( S )  = L , ( S ) + L _ ( S ) ,  (3.25) 

where L + ( s )  and L ( s )  are regular in upper and lower half-planes respectively. Then 
from (3.21) we obtain 

(3.26) 

where each side is regular in its appropriate half plane. If we can choose the decomposi- 
tions (3.24) and (3.25) in such a way that the half planes overlap, and that each side 
tends to 0 as s .+ CC in the appropriate half plane, then each side must vanish identically 
by Liouville’s theorem, so that 

$(is) 2: ~ . . ( s ) / ~ - i s ) .  (3.27) 

K-(s)$(is) - L _ ( s )  = L + ( s ) + i ( - i s ) / K + ( s ) ,  

From the inverse Fourier transform 

we have in v > O  
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If we can interchange the order of integration, we shall get 

4(y,  U )  = -- $(is)J2(-is, -U) exp(isy) d s  

D,( U - 2is) 
exp(isy+av2) ds, (3.28) 

where v is given by (3.23). 
The function Dk2-,(-2q) is regular for all values of q, and (as shown in appendix 

1) its zeros q = d , ( T )  (n=0 ,1 ,2 ,  ...) all lie in Rq>O, provided that R T > ~ .  The 
problem of factorising K (s) therefore reduces to that of constructing the factorisation 

r ( S 2 + T ) = Y + ( S ;  T ) Y - ( S ;  7 ) .  (3.29) 

The details of this factorisation are given in appendix 2; we note here that we can take 

Y - ( S ;  T ) = Y + ( - S ;  7 ) .  (3.30) 

Hence we put 

and 

K - ( s )  = K + ( - s ) .  

From appendix 2 we have 

(3.31) 

(3.32) 

(3.33) 

as I S ~ + C O  with /arg(-is)l<.ir-6. 
If g( U ;  T )  = 0(eA1" ' )  as U + -CO, the integral 

loW i ( q ;  g ( - w ;  T ) & ( q ,  0; 7, w) dw 

converges uniformly except near the poles q = - d , ( T )  of & ( q , O ) ,  so that the sin- 
gularities of L ( s )  are poles at s = idn( T )  and s = -iqn( T )  for n = 0, 1,2, . . . , where 

q n ( T )  = ( n  + T)"' (3.34) 

and the T plane is cut along the negative real axis. The decomposition of L ( s )  is also 
treated in appendix 2. From (3.27) it follows that &is) is regular except for poles at 
s =iqn(7) .  The integrand of (3.28) has poles at s = i q , ( ~ )  and s = -idn(T). If we can 
evaluate 4( y, U ;  T )  from (3.28) in terms of the residues of the integrand in the upper 
half plane, we obtain after some reduction 

For the case (3.71, we have when T = a2 (corresponding to p = 0) 

- DL(2is) - aD,(2is) 
O(is; a ) = - 

( is+ a)D',,(fis) ' 

(3.35) 

(3.36) 
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where now 
2 2  v = - s  - a .  

Hence 

(3.37) 

The Wronskian relation (A1.4) enables us to put 

L ( s ; a ) = L , ( s ;  a ) + L 2 ( s ;  a ) ,  (3.39) 

where 

{ ~ ; ( - 2 i s ) +  a~ , ( -2 i s )}y+(s ;  a’) 
L,(s ;  a )  = 

(2T) i /4( i s+  9 

and 

(3.40) 

(3.41) 

The function L , ( s ;  a )  is regular except at the poles s = -iqn(a2) of y + ( s ;  cy2) ,  since 
{D:(-2is)+aDV(-2is)}=O when s = i a ,  and L , ( s ;  a ) = O ( l ~ l - ~ ’ ~ )  as Is l+co with 
larg(-is)l< n- 6. L2(s; a )  is regular except at the zeros s = id,(a2) of D;(2is), and 
possibly at s = i a ;  as Is l+co with larg(is)l<n-S, L2(s;  a ) = O ( l ~ l - ” ~ ) .  

If R a  > 0 the first pole of y + ( - s ;  a’) is at s = ia, and therefore cancels the zero of 
( i s+  a )  in L 2 ( s ;  a ) .  Hence, provided that R a 2 >  0 also, we can take 

L + ( s ;  a )  = L , ( s ;  a ) ,  L - ( s ;  a )  = L2(s; a ) .  (3.42) 

In particular, L-(iq,(a2); a)=O when n = 1 , 2 , 3 , .  . .and 

L-( ia ;  a )  = 2(2T)1/4a exp(a2)y+(ia;  a’). (3.43) 

The series (3.35) therefore reduces to the single term n = 0, giving 

d(  y ,  U ;  a’) = exp( a 2 ) ~ o ( u  + 2 a )  exp( - a y  +:U’) = exp[-a(u + y ) ] ,  (3.44) 

which corresponds to 

6( y ,  U ;  0) = 1 .  (3.45) 

If we change a into -a (keeping Ra  > O ) ,  we see that L,(s; - a )  has a pole s = -ia 
in the lower half plane. Consequently we must now take 

( 2 ~ ) ’ ” ~  exp(a2) 
(is - a )  y+(ia ; a’) ’ 

( 2 ~ ) ~ ’ ~  exp(a2) 
( i s - a )y+( i a ;  a’)’ 

L + ( s ;  - a )  = L , ( s ;  - a ) +  

L - ( s ;  - a )  = L,(s; - a ) -  

again assuming that R a 2 >  0, so that 

(3.46) 

(3.47) 
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The series (3.35) now takes the form 

(3.48) 
a exp(a2+au2)  3i Dn(u+2q,)  e-¶nY 
y+( i a ;  a’+ 1) n=o  n!q,y+(iq,; a’+ 1) ’  T. - - 

from (A2.25), where qn = ( n  + a’)”’. 
The solutions (3.44) and (3.48) for g ( u )  = exac  were derived on the assumptions 

that U > 0 and Ra2> 0. Clearly (3.44) is valid also for U s 0 provided only that Ra > 0. 
In (3.48) the nth term of the series 

(3.49) 

(from (A1.30) and (A2.20)) so that the series converges uniformly in U and y when 
y 3 0 and Ra > 0, and satisfies equation (3.3) with 7 = a’ for all U with y > 0. Hence 
(3.48) is valid for all U when y 3 0 and Ra > 0. From the construction of the series 
we infer that 

a ’ + v 2 i 4  

for U < 0 (3.50) D, ( U + 2q” 1 f a e  e”‘ = 
y+(ia;  a’+ 1) ,,=O n!q,y+(iq,; a’+ I )  

provided that Ra > 0. The temporary restriction to Ra’ > 0 was an artificial con- 
sequence of the device of splitting the region y > 0 along the line U = 0, and the necessity 
of this restriction disappeared with the factors DL( * 24,). 

The solutions for g (  u )  = exp( F au), with T = a’, can be generalised. We define, 
for n = 0 , 1 , 2 ,  . . .  

f : ( u ;  T I  = (n!)-’’: exp($u2)D,(2q,(~)  F U). 

Thus if Ra > 0 

exp( F au) = exp( a2)f:(  u ; a*) .  

If we take T =  a 2  and 

(3.51) 

we obtain, in place of (3.40) and (3.41), 

(3.54) 

When we take the upper signs in (3.52)-(3.54), assuming temporarily that R a 2 >  0, we 
have L + ( s )  = L , ( s ) ,  L - ( s )  = L 2 ( s ) ,  and hence 

d ( y ,  U ;  c y 2 )  =f;(u; a 2 )  exp(-q,,,y). (3.55) 

With the lower signs we must take 

(2 p4 L-( s)  = L2( s) - 
(m!)”2(is-  qm)y+(iqm; a’)’ (3.56) 
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(3.57) 

where we define, for each n = 0,1 ,2 , .  . . and T in the cut plane, 

On(7) = (n!)”2y+(iqfl(T): 7) .  (3.58) 

As in the cases g( u )  = exp( T au) ,  the solutions (3.55) and (3.57) are valid for all u 
with y 3 0, provided only that Ra > 0. In particular, we can replace a 2  by T to obtain 
the expansion 

(3.59) 

For the general case, with an arbitrary function g( u ;  T )  defined in U < 0, we have 

DI(-Zis)y+(s; T) g(-w; ‘T)W exp(-$w2)D,(2is+ w)  dw 
( ~ T ) ” ~ D : (  2is) 

(3.60) 

Because we are assuming that g ( u ;  T) =O(exp(Alul)), the integral in (3.60) is a regular 
function of s. As shown in appendix 2, we can evaluate L + ( s ;  T) in terms of the 
residues of L(s; T) at the poles s = -iqn(T). This gives 

where qmr Qm have argument T, and the inner product is defined by 

( F ,  G) = F ( u ) G ( u ) ( - U )  exp(-$u2) du. rX 
Then L - ( s ;  T )  = L ( s ;  T )  - L + ( s :  T ) ,  and the series (3.35) gives 

(3.61) 

(3.62) 

(3.63) 

As with (3.48) and (3.57), this result, although derived initially for U > 0 and RT> 0, 
extends to all values of U and all T in the cut plane. Corresponding to (3.50) we have 
the general expansion 

where 

(3.64) 

(3.65) 

The expansion coefficients can also be expressed in terms of the pseudo product 

(3.66) 
5 

[ F ,  G]= { F ( u ) G ( u ) u  exp(-iu2) du, 
-K 

since the relation (3.59) shows that F ; ( u )  = O  if u > O .  Thus 

(3.67) 
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independently of the form of g( u ;  7) when U > 0, and 

For the case 

g ( u ;  ~ ) = e x p ( - - ( ~ u )  a > 0, 

we have (see appendix 1) 

(3.68) 

(3.69) 

' I 2  

[g,fnf]= *[SI ( T - a 2 ) ( q n * a ) n - 1  e x p ( F a q , , - i q ~ + ~ a ' ) ,  (3.70) 

so that from (3.68) and (3.1) 

9 (3.71) 
X exp(au)fR(u) exp[-(q, - a ) y l  

q n  

where 

(3.72) 

(3.73) 

a n ( p )  = ( n ! ) - ' 1 2 ( q n  -a)"-' exp[aq, - i ( n + p ) ] ,  

b,( p )  = ( n  !)-1'2( qn + a)"- '  exp[ -aqn -i( n + p ) ] ,  

qn qn ( p + a 2, = ( n + p + a *) ' I 2 ,  Qn = Q n ( P  + a2) ,  

and the p plane is cut along the negative real axis from -a to -a2  

4. Numerical solution 

The Laplace inversion of (3.71) to give @ ( y ,  U ;  t )  appears to be out of the question. 
We can, however, obtain valuable information about the first-passage times from the 
behaviour of (3.71) near p = 0 and near p = -a'. 

For example, from (3.72) we deduce that, as p + O + ,  the coefficients a n ( p )  and 
b , ( p )  all remain finite except that 

It follows that 

[om@(y, U ;  t )  dr = 6 ( y ,  V ;  0+) = 1, (4.2) 

which means that the total probability of absorption is 1, so the process is recurrent. 
Similarly, the mean first-passage time is obtained from the first derivative of r#~ at 

p = 0, that is 

I =  Y( y, U )  = -6J y ,  U ;  O+). (4.3) 
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Using (4 , l )  again, we obtain 

where qm and Qm now take their values at p = 0, that is 

qm = ( m  + a')'/', Q~ = ( m  !)I/'y+(iq,; a'). (4.5) 

We may also obtain the leading term in the asymptotic expansion of @( y ,  U ;  t )  as 
t + +CO, by examining the behaviour of 6( y ,  U ;  p )  near its first branch-point at p = -a2. 
We find that 

6 ( y ,  u ; p ) = & ( y ,  U ;  - a 2 ) - ( p + a 2 ) 1 ' 2 F ( y ,  U ;  a ) + O ( p + a 2 )  (4.6) 

so that, asymptotically 

The function F (  y ,  U )  was obtained from the second term in the Taylor series of (3 .71)  
expanded in powers of qo. We find that 

F ( y ,  U ;  a ) = e x p [ a ( y + u ) I H ( a ) G ( y ,  U), (4.8) 
where 

and 
1 exp(-ydn + u2/4)Dn(2Jn + U )  

G ( Y , u ) = y + u - l ( t ) - ;  C (4.10) 
n = 1  n ! J n y + ( i J n ;  1 )  

The task of obtaining numerical values from (4.4) falls naturally into three parts: 
(a) the computation of the coefficients appearing in the sum; (b) the summations over 
m;  (c) the summation over n. We describe these in turn. The computation of (4.8) is 
somewhat easier, owing to the factorisation, but broadly similar. 

4.1. The computation of the coeficients 

Since a, and b, are given explicitly by (3.72), the only problem is in the computation 
of Q,,. One of three different routines was used, depending on the value taken by qn. 
For qn > 3.2, the asymptotic expansion (A2.31) 

a; [ ( - r - f , a 2 )  
r = O  ( 2 r +  l)q2,'+' ' 

log Qn - ; log( 27T) - C (4.11) 

was used. The other two routines both made repeated use of the relation (A2.25) 

Y+(iqn; q?n+l) = ( q n  + qm)~+(iqn;  9;). (4.12) 
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Within the range 1.6 < qn s 3.2, the above relation was used to express Qn in terms of 
y+(iqn ; q i ) ,  which was computed with the aid of the asymptotic expansion (A2.39). 
Finally, for qn s 1.6, Qn was expressed in terms of y+(iqn; &+,,), which was computed 
from the Taylor expansion (A2.37) with N put equal to 2 5 .  

These routines, over the whole range of q,, give values of Qn correct to seven 
decimal places. 

4.2. The m-summations 

We define 

(4.13) 

For large m, Q, is represented by the asymptotic expansion (4.1 1 ) .  The corresponding 
expansion for b, is 

(4.14) 

It will be evident that the summand in (4.13) is asymptotically a multiple of m-7’4, so 
that the sum converges rather slowly. Our summation routine summed the terms 
explicitly for O S  m S 50 and replaced the ‘tail’ of the series by an Euler-Maclaurin 
expansion, whose first term, the integral of the summand with respect to rn, is 

4 ( 2 7 ~ ) - ~ ’ ~ q ; ~ ’ * (  p - tan - I  p ) with p = q!,”(50+ (4.15) 

4.3. The n-summation 

Here the nature of the convergence varies greatly with the values of y and U .  For y 
well separated from zero, the series is rapidly convergent on account of the factor 
exp[ ( a  - q n ) y ]  in the summand. It therefore suffices to take a small number of terms, 
and the appropriate functions f R ( v )  are computed with the aid of the recurrence 
relations for the Hermite polynomials. For y = 0, the series is very slowly convergent, 
as may be seen (see (A1.30)) from the fact that, for large n 

f , ( v )  - n-1’24  Ai( n1’6u).  (4.16) 

Consequently another Euler-Maclaurin routine had to be devised for values of y close 
to zero with U negative, and for y = O  with U positive. For such a routine it was 
necessary to know the asymptotics, for large n, of the coefficients g,. These were 
obtained (see appendix 3) as 

(4.17) 

where 
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(4.19) 

Thus the leading term in the summand behaves, for large n, like n-z5’24Ai(n’’6u). 
By increasing the number of terms taken in the various asymptotic and  power series 

expansions, we may increase without limit the accuracy of Y(y, U )  and F(y ,  U). We 
were able to submit our computing procedures to a particularly stringent test by 
computing the values of Y ( y ,  U )  for negative U and small y. It is obvious from the 
form of (2.6)-(2.8) and also from elementary dynamics, that 

Y(y ,v ) - -y /u ,  as y + O + ( u < O ) .  (4.20) 

This result is, however, not at all obvious from the form of (4.4), and indeed this is 
the region of phase space for which the n-summation has the slowest convergence. 
Nevertheless, for moderate values of U we were able to verify numerically that (4.20) 
is satisfied. 

In figures 1 and 2 we have plotted the mean first-passage and recurrence times 
Y(y, 0) and  Y(0, U). We have found it convenient to change the independent variables 
to y / 2 a  and  v /2a ,  because this enables us to display (as a bold curve) the deterministic 
limit, for which 

t D = y / 2 a + ( 1  +u/2a) [ l -exp(- tD)]  a++co. (4.21) 

It is also convenient to plot, as dependent variable, the function Y ( y ,  U )  --Yd&, U )  

where Yd,ff(y, U )  is obtained by solving the equation for 6 in the diffusion limit, that 
is 

d 2 6 / d y 2 - 2 a  d 6 / d y - p 6 = 0 0 ,  6(0+;  p ) =  1, (4.22) 
giving 

6 ( Y ;  P )  =exp[(.’+p)yl, (4.23) 
and hence 

@diff(Y, U )  = y / 2 a .  (4.24) 

y l Z a  

Figure 1. Mean first-passage time for a particle, released with zero velocity at distance y 
from an absorbing barrier in a uniform force field a, given as a divergence from the 
prediction Y d , w ( y ,  0) = y / 2 a  of the diffusion model. 
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I I I I 
0 5  1 0  1 5  2 0  

V l Z U  

Figure 2. Mean recurrence time for a particle, released with velocity U in a uniform force 
field a. 

It will be noted from figures 1 and 2 that, as a +CO, the recurrence and  first-passage 
times both approach their deterministic limiting values. It may seem rather surprising, 
however, that this limit is approached from above rather than from below, since 
intuitively, the diffusion limit and the deterministic limit represent two extreme cases. 
Such a n  intuition proves unreliable here. This is because the case a + 0 does not 
correspond very well to the diffusion limit. Indeed, as a + 0, one obtains the limiting 
behaviour 

W Y ,  0) = G(y,  u) I2a+0(1) ,  

where G(y, U )  is as defined in (4.10) above. 
Because of the factorisation of (4.8), the asymptotic first-passage and recurrence 

times may be represented in tabular form. In table 1 we give the functions G( y, 0) 
and G(0, U), while in table 2 we give the function H ( a ) .  

We observe that, from (4.10), the asymptotic form of G (  y, U), for large positive y 
or  U, is 

G( y, U )  - y +  U +  1.4603.. . ( y ,  v + + a ) .  (4.25) 

We may compare the result for G( y, 0) with the diffusion limit by looking at the 
right-hand side of (4.23) in the neighbourhood of p = -CY* ,  obtaining 

(4.26) 

which is equivalent to 

FdifT( Y, U ;  a ) = y  exp(ay).  (4.27) 

It will be seen that our exact result bears little resemblance to this: 

F ( y ,  0; a )  = H ( a )  exp(ay )G(y ,  O),  (4.28) 

and in particular, for large y (4.27) and (4.28) differ by a factor of H ( a ) .  It would 
therefore seem that the greatest divergence between the diffusion model and our more 
exact model is in their predicted values of asymptotic first-passage times. 
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Table 1. The function G( y, U )  for v = 0 and y = 0. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1.1341 
1.3485 
1.5152 
1.6609 
1.7947 
1.9208 
2.0416 
2.1585 
2.2724 
2.3840 
2.4938 
2.6022 
2.7093 
2.8154 
2.9208 
3.0254 
3.1294 
3.2329 
3.3360 
3.4387 

0.6948 
0.9803 
1.203 1 
1.3931 
1.5627 
1.7184 
1.8639 
2.0018 
2.1337 
2.2609 
2.3841 
2.5042 
2.6216 
2.7368 
2.8501 
2.9618 
3.0721 
3.1812 
3.2893 
3.3964 

Table 2. The function H ( ( I ) .  

0 1 .oooo 
0.1 1.1601 
0.2 1.3524 
0.3 1.5845 
0.4 1.8658 
0.5 2.2085 
0.6 2.6282 
0.7 3.1448 
0.8 3.7843 
0.9 4.5804 
1 .o 5.5774 

We make two final remarks which establish points of contact between our work 
and investigations of the stationary problem. 

Firstly the exact solution of the ‘Milne problem’ of Selinger and  Titulaer ( 7 )  is 
related to our  function G ( y ,  U). The Milne problem is to find the stationary solution 
of (2.1) for the case a = O  such that 

(4.29) W(x,  U )  - ( 2 ~ ) - ’ ’ ~ ( x  - U + x M )  exp(-iu2) as x + +CO, 

W(X, U )  -+ 0 

W(O+, u ) = O  

for U + *CO (4.30) 

for U > 0. (4.31) 
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The solution is 

W ( x ,  U )  = ( 2 7 ~ ) - ” ~  exp(-4u2)G(x, -U), (4.32) 

as can be shown with the aid of the expansion (4.4) and the explicit formula (4.10). 
It follows that the ‘Milne length’ x M  = -l($) = 1.460 35, in good agreement with the 
estimates of Selinger and Titulaer [7] and Titulaer [8]. 

Secondly we stress that there is no real difference in difficulty between solving (2.1) 
and (2.6). We have chosen to present here the solution for 0 rather th.an W because 
of the greater simplicity of notation gained by integrating over U. It should be noted 
that the albedo problem, as defined by Selinger and Titulaer, is solved by integrating 
W with respect to t. More precisely, the probability that a particle, released from x = 0 
with velocity U, will be absorbed at x = 0 with velocity between U and U + du is 

w ( u ; u ) ~ u = - u  W ( O + , U ; O , U ;  t )dtdU=-uW(O+,U;O,  U;O)du (4.33) sa 
Further details on both of these matters will be given in a later paper. 
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Appendix 1. Parabolic cylinder functions 

The function D,(z) is the solution of Weber’s equation 

d2W/dz2+ ( v + f - t z 2 ) w  = 0 

such that 

- . . .) V( Y - 1) V( v - 1)( v -2)(  v -3) 
D,(z) -exp(-fz2)z” + 

2 . 4 ~ ~  

(Al . l )  

(A1.2) 

as z + +CO. D,(z) is a regular function of both z and v for all finite values of the 
variables. It can be expressed in terms of the confluent hypergeometric function as 

(Al.3) 

Weber’s equation is also satisfied by the functions D;(-z) and D-u-l(*iz). The 

(A1.4) 

shows that D,(*z) are independent solutions of (Al . l )  unless v = 0, 1,2,  . . . . Any three 
solutions of (Al . l )  are connected by a linear relation, and 

and the asymptotic expansion (A1.2) is valid as IzI + o;, in /arg zI < $ 7 ~  - 6. 

Wronskian relation 

D,(~)D:(-z) + D:(z)D,(-~) = -(27T)1’2/r( - v )  

(A1.5) 
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so that if n = 0, 1,2, . . 
D,(-z) = (-l)flDn(z). (Al.6) 

In the case Y = n = 0,1,2, .  . , the expansion (A1.2) terminates and is identical with 
(A1.3). Using Kummer's first theorem we can express (A1.3) in this case as 

D,(z) = (-1)" exp(fz2)(d"/dz") exp(-iz2), (A1.7) 

from which we can establish the orthogonality relation 
m 

D,(z)D,(z) d z =  ( 2 ~ ) " ~ n ! 6 , , ,  (A1.8) 

where m and n take the values 0 ,1 ,2 , .  . . . 
We can also use (A1.7) to prove the result (3.70). With q = q n ( 7 ) ,  we have 

m 

( n ! ) ' ' 2  [exp(-au), f;] = U exp(-au-au2)D,(2.q+ U )  du 

=Im U e ~ p [ - a u - ~ u ~ + f ( 2 q + u ) ~ ] ( - d / d u ) "  exp[-f(2q+u)'] du. 

L 
-m 

Integration by parts n times now gives 
m 

exp[ - i(2q + ~ ) ~ ] ( d / d u ) " {  U exp[ ( q  - a ) u  + q 2 ] }  du L 
zs 

= 1 [ ( q  - a)"o+ n ( q  -a ) " - ' ]  exp[-fu*-(q+a)v - q2] du 
--f 

m 

[ ( q  - a ) ( u + q +  a )  - q 2 +  a'+ n ]  L = ( q  - a)"-' 

x exp[-i( U +  q + a)2+i (q  + a ) 2  - q 2 ]  du 

= ( 2 ~ ) ' " ( q - - a ) " - ' ( n  - q 2 + a 2 )  exp(- iq2+aq++a2) .  (A1.9) 

This is equivalent to the result stated in (3.70). The case [e-O", f : ]  is evaluated by the 
substitution U = -U and a change of sign of a. 

The function 

4 ( x ;  497)  = Dq2-,(x-2q) (A1 . lo) 

satisfies the equation 

4"(x)  + ($ - 7 -ax2+ qx)4(x)  = 0, ( A l . l l )  

with the condition Q(x)  + 0 as x + +W. The further condition d'(0) = 0 determines an 
infinite set of eigenvalues 

q = d n ( 7 )  (A1.12) 

which are the zeros of the function D;2-,(-2q). The eigenfunction that corresponds 
to (A1.12) is 

dn(x;  T ) = ~ ( x ;  J n ( 7 ) ,  7).  (A1.13) 
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These eigenfunctions satisfy the orthogonality relation 

if d ,  # d,, lom x4m (x)4n (x)  dx = 0 

and it follows that if T is real, so also are the eigenvalues d , (T) .  
If q is any function of T, it follows from ( A l . l l )  that 

so that, taking q = d, (T) ,  we see that 

(dldT){d,(T))> 0 

( A l .  14) 

(Al.15) 

( A l .  16) 

if T is real. The eigenvalues must be distinct if T is real, and they can be labelled by 
the condition d,(-2n) = 0. Since the functions d,(.r) are analytic, this labelling can 
be extended to complex T ;  singularities can occur only where eigenvalues coalesce. 

If q, and qb are any two eigenvalues belonging respectively to T, and Tb, and 
4,(x) = 4 ( x ;  qi, T ~ )  for i = a and i = b, then 

lo' {2(4h +fx40)(4b +fX4b) + [ T o  + Tb - ( q o  + qb)X14,4b) dx = O* ( A l .  17) 

If T, and Tb are complex conjugates, then we can suppose that so are q, and qb.  In 
this case (A1.17) shows that 

(Al .  18) 

so that if RT, 5 0 we must have Rq, 2 0, and further Rq, > 0 unless 4, exp( -ax2), 
which is possible only when T ,  = q. = 0. 

Equation ( A l . l )  has turning points at z =  *(4v+2)'/', and when q is large the 
corresponding values of x in (Al.11) are near 0 and 4q. Thus the behaviour of 4 ( x ;  q, T )  

for moderate values of x and T,  but large (91 depends on that of D,(z) near a turning 
point for large Iv(. Approximations to the solutions of a differential equation in a 
region containing a turning point can be obtained by the method described by 
Olver [ 181. 

We put 

N = 2 v + l ,  z = (2N)'l2t, 

and define 

Then 

(A1.19) 

(A1.20) 

(Al.2 1 )  

(A1.22) 
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and 
3 t2+2 

F ( r ] )  =& 7?-2 -4 ( t2 -  1)3 7). (A1.23) 

We look for an asymptotic solution of (A1.22) for large N in terms of the Airy 
functions in the form 

U(r] )  = L(N)(Ai( l )  n = O  f a,(r])N-’“+Ai‘({) n = O  z Pn(r])N-2”-4’3), 

U r ( r ] ) = L ( N ) ( A i ( l )  n = O  f yn(r])N-2n+Ai‘({) n = O  6n(r])N-2n+2’3), 

where 
5 = N2l3  r] 

and 

4 . 7 )  = S O ( 7 7 )  = 1. 

Then we find that 

(A 1.24) 

(Al.25) 

(Al.26) 

(A1.27) 

and that this solution matches the asymptotic expansion (A1.2) provided that 

L ( N )  = ( 2 . r r ) 1 ’ 2 ~ 1 / 6 ( $ ~ ) ( N - 1 ) / 4  exp(-fN){l -AN-’  +o(N-’)}. 

From these results we find that, as 1q( + m with larg q (  <$.rr - 6, 

~ , ~ - , ( 2 ~  + w )  = (2?T)1/2qq2-T+1/3 exp( -jq’)[Ai( q 1 l 3 w )  + O(q-2’3)] ,  

(A1.29) 

(A1.30) 

exp(-jq’)[Ai’(O) + ~ ( q - ~ / ~ ) ] .  (Al.3 1) 

It can be shown by use of (A1.5) that (A1.30) and (A1.31) are valid throughout 
larg q )  < .rr - 6. Another application of (A1.5) leads to 

Dq2-,(-2q + w )  - (2T) 1/2  q q2-7+1/3 exp(-jq2){exp[(q2 - ~ + f ) 7 ~ i ] ~ i [ e x p ( f . r r i ) q ” ~  w ]  

1/2 q 2 - r + 2 / 3  q-&) = (2.rr) q 

+ exp[ -( q 2  - T + f)~i]Ai[exp(-f.rri)q’’~ w ] }  (Al.32) 

~ ~ ~ 4 - 2 ~ )  - (8.rr)1/2 ~ i y o ) q q ~ - ~ + ~ / ~  exp(-fq2) cos(q2- T + ~ ) ? T ,  (A1.33) 

as 1qI+m with larg q l < $ r r - S .  Equation (A1.33) shows that the large zeros of 
Db2-J -2q) are approximately of the form q = ( n  + 7 -:)”*, where n is an integer. 

It is possible to obtain further coefficients a,(r]) to 6,(r]) in (A1.24) and (A1.25), 
and hence to extend the asymptotic formulae (A1.30) to (A1.33), but the calculations 
are tedious and the results are complicated. 

Appendix 2. The Wiener-Hopf decompositions 

Given a function F ( s ) ,  regular in a strip -a S Is 6 a and vanishing as Rs + *CO, we 
can express it in the form 

F ( s ) =  F + ( s ) + F - ( s ) ,  (‘42.1) 
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where F+( s) is regular in Is 2 - b and F-( s) is regular in Is =s b, for any b with 0 < b < a. 
This can be done by defining 

F*(s)=- 5 - F(z)dz,  
27ri c, z - s  

where the paths of integration C, are the lines Is = T c, b < c < a, and Rz increases 
along C, from -CO to +CO, but decreases along C- from +CO to -CO. 

This method cannot be applied directly to the function log T ( s 2 +  T), because it is 
large when Rs + *CO. However, we can take 

d3 
ds  

~ ( s )  = 7 log r(s2 + T)  = 8s34”(s2+ T)  + 12s4’(s2+ T) ,  

where 

and y is Euler’s constant. From the decomposition of F ( s )  we can then derive a 
decomposition of log T(s2+ T) by integration. From (A2.3) and (A2.4) we have 

-4s3+12(n+7)s F(s)=zo (n+s2+7)3 * 

which we can express in partial fractions to give (A2.1) with 

(A2.5) 

where 

q n ( r I = ( n + T ) ” 2  (A2.7) 

and the T plane is cut along the negative real axis. The results (A2.6) can also be 
established from (A2.2) by completing the contours C, in the appropriate half planes. 

When we integrate (A2.6) three times, with appropriate conditions at s=O, we 
obtain after exponentiation 

r ( s2+~)=r+( s ;  T)r-(s;  T), (‘42.8) 
where 

(exp(s/iq, + s2 /2qf )  r+(s; T )  = [ r ( ~ ) ] * / ~  exp[&(~)s’] n 
n = O  1 + s/iqn 

ana 

rys; 7) = r+(-s; 7) .  (A2.10) 

The functions r,( s ; 7) are regular and non-zero in their respective half planes, but 
they are not the only such functions to satisfy (A2.8). We shall need to modify them 
by defining 

7) = u s ;  7 ) ~ ~ s ;  T))*’, (A2.11) 

where f ( s ;  7) is a suitable function that is regular and non-zero for all s. The choice 
of f ( s ;  T )  must be made so that the subsequent decomposition (3.25) of L ( s )  is possible 
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and leads to functions L,(s) that tend to 0 in their respective half planes as (sI+m. 
For this reason we must determine the asymptotic behaviour of T+(s ; T )  as Is/ + Co. 

The Mellin transform 

( A2.12) 

can be evaluated, from either the integral (A2.2) or the series (A2.6), as 

A 

(Z - 1)(Z - 2) exp(4rriZ) 5 ( - ’, T )  (A2.13) 
rri 

sin TZ 
F + ( z ;  T ) = - -  

for 0 < RZ < 1, where 
1: 

l ( z , a ) =  c (n+a)-; 
n = O  

(A2.14) 

is the generalised zeta function. The inversion theorem for Mellin transforms now gives 

F+(S; T )  = -- 1 {c+l=(z-l)(z-2) exp(irriZ)[( 7, 3 - 2  T ) s - .  dZ, 
2 c-lcc sin TZ 

(A2.15) 

where 0 < c < 1 and s > 0. Since 
n 

lI(x+iy,  T ) I < [ l + e x p ( y a r g ~ ) ]  C I ~ + T ( - . ‘  for x > 1, (A2.16) 

the integral (A2.15) converges absolutely for all complex s such that both larg(-is)ls 
rr- 6 and larg(-isT-1’2)l< rr - 6, so that analytic continuation extends (A2.15) to all 
such s. Integration three times now gives 

n = O  

The power-series expansion for log T+(s ;  T )  can be obtained by evaluating the 
integral in (A2.17) by means of the residues at the poles of the integrand to the left 
of the path of integration. This can be justified by means of (A2.16), and gives 

(A2.18) 

provided that (si2 < ( n  + 71 for all n = 0, 1 ,2 , .  . . . The function <( z, T )  can be continued 
analytically to all z except for a simple pole at z = 1, and it can be proved that 

15(x+iy, ~ ) / < A ( x ,  7, S)[ l+exp(y  arg ~ ) l l ~ 1 ’ / ~ - ~ e x ~ ( ~ l y / )  (A2.19) 

for any 6 > 0  and sufficiently great 1 ~ 1 .  Using this result, we can move the path of 
integration in (A2.17) to the right and show that as /s l+o= 

log r+(s; T )  -[log(+) -i]s2-i5(;, T ) S +  ( T  -1) log(-is)+i l o g ( 2 ~ )  

(A2.20) 

Although the argument requires both larg(-is)l< rr - 6 and larg(-isT-1’2)l < rr - 6, we 
can drop the second condition by using the relation T+(s ;  T ) r + ( - s ;  T )  = T(s2+ 7 ) .  This 
relation, combined with r( s2 + T ) r (  1 - s2 - T )  = rr cosec (s2 + T ) T ,  enables the 
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behaviour of r+( s ; T )  to be determined near the negative imaginary axis and the poles 
s = -iqn(T). 
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The function f ( s ;  T )  in (A2.11) must be chosen so that 

(2T)1/4 
K + ( s )  = - 

T+(s ;  T ) ~ ( s ;  ~)D!.,z-,(-2is) 

shall behave asymptotically like a power of s. From (A1.31) and (A2.20) 

( -is)1i6 exp[ -il(+, T I S ] ,  T+(s; ~)D!.,2-,(-2is)- -- (2T)3/4 
3 Il3r( f ) 

(A2.21) 

(A2.22) 

(A2.23) 

(A2.24) 

as / S I  + CO with larg( -is)\ < T - 6. 

Using the product form for y+(s; T ) ,  derived from (A2.9) and (A2.23), we can show 

(A2.25) 

(A2.26) 

(A2.27) 

that 

y + ( s ;  T +  1) = (rl / ' - is)y+(s;  T ) ,  

(2s a /aT-a /as )  log y+(s; T )  = -i<(t, T), 

y+(s;  T)Y+(s; ~ + f )  = Ti/4y+(21/2s; 27). 2 ++I- 1 i  2 

In order to evaluate the series (3.71) we need to compute numerical values of 

Q n ( 7 )  = (n!)1'2y+(iqn(T); T I .  (A2.28) 

When n is large, this can be done from the asymptotic expansion (A2.20), where the 
term -il(;, 7)s is omitted when r+ is replaced by y+. If we write 

4 = % ( T I ,  n = q2 - T, (A2.29) 

we have 

log( n !) - [log( q 2 )  - 

so that as n -f CO 

log Qn 

i' l ( - m - l ,  T )  
] q 2 +  ( 4  - 7) log( q 2 )  +; log(2r)  - m=O c (m+2)q2m+2'  (A2.30) 

(A2.31) 

If n is not large, it is convenient to apply the formula (A2.25) repeatedly to give 

for a suitably large value of N .  We now define 

P ( q ,  a ) = l o g  y+(iq; q 2 + a ) ,  

(A2.32) 

(A2.33 ) 
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so that from (A2.26) 

aP(q ,  a ) / a q  = -set, q 2 +  a ) ,  

a ) / a q 2 =  q i ( t ,  q2+  a ) .  

and hence 

Provided a > 0, and 1qI2 < a, we can express (A2.35) as 

It follows on integration that 

(A2.34) 

(A2.35) 

(A2.36) 

(A2.37) 

for )qI2< a. 
We can also obtain an asymptotic expansion for P(q,  a )  as q + CO. The integral 

C+imr(-s)r(s+;)~(s+;, a ) q 2 s + 1  
ds 

r ( t ) ( 2 ~ +  1) 
(A2.38) 

converges absolutely for all a > 0, provided that larg q1 S ;.rr - S. The poles of the 
integrand belong to two classes, namely 

(1) s = m ,  (2) s=--1-m 2 ,  

where m = 0,1,2, . . . . The pole at s = -f is double, but the rest are simple. If the path 
of integration is chosen to separate the two classes of poles, we can evaluate Z in terms 
of the residues at the poles of class ( l ) ,  provided that 1qI2 < a. This gives 

We can also move the path of integration across the poles of class (2), and thus derive 
the asymptotic expansion of I as 1q/ + 00, namely 

Combining these results, we have 

(A2.39) 

as / q /  + CD with larg q1 s 47r - 6. Here the Bernoulli polynomials dm( a )  are defined by 

z"' z exp(az) 05 

C 4m(a)-= 
m=O m !  e'-1 ' 

(A2.40) 

In applying these results to (A2.28) with the aid of (A2.32) we have 

a = r+ N - q 2 =  N -  n. (A2.41) 
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For (A2.37) a, and hence N, should be large, but in (A2.39) it is best to take a F 1, 
and hence N = n + 1, since 

(-1 ) (;),,+I Bk+ I P ( q ,  1)-  q2+$10g(87rq2)+ E 
k = O  (2 k + 2) !(4k + 2)q4k+2 ’ 

where the Bernoulli numbers are given by 

(A2.42) 

(A2.43) 

We consider the decomposition of the function L ( s ;  T )  given by (3.60). We can 
use the formula (A2.2) in this case, since L(s; T )  vanishes as I s I + c o .  This can be 
shown if we approximate to the integral in (3.60) by means of (A1.26). It follows that 
unless s is near the positive imaginary axis we have 

L(s; T ) - - ( 2 7 r ) ’ ”  g(-W; T ) W  exp(-aw2) A i ( ( i ~ ) ” ~ w ) )  dw A(s) ,  (A2.44) 

where 
lom 

exp( -$?ri)s-’/6 if /arg S I  s t?r - 6, 

exp(t.ri)(-s)-1/6 if larg(-s)/sf?r-6,  (A2.45) 
COS(S2+T-3)T 

iflarg(is)l - 6. sin( s2 + T )  ?r 

The Airy function in (A2.44) is exponentially small as ( S I  + CO, since larg(is)l< 7r - 6, 
unless w = 0. Consequently the integral is given asymptotically by the behaviour of 
the integrand as w+O, as with Watson’s lemma for Laplace transforms. (Compare 
Olver [ 181 p 337.) The integral therefore vanishes as Is1 + CO, and if g (  - w ; T )  is analytic 
at w = 0, then L(s,  T )  = O ( ~ S / - ~ ’ ~ ) .  

Because L ( s ;  T )  is small at infinity, we can evaluate L + ( s ;  T )  by deforming the 
contour C, of (A2.2) into a loop round the negative imaginary axis. By considering 
integrals across this loop along lines s = -i(N+ T+;+iy)1’2, where N is an integer, 
we can then show that 

(A2.46) 

It also follows from (A2.2) that since L(s; T )  = O ( ] S ~ - ~ )  as Isl+00 on C+, for some A 
with O <  A < 1, then also L,(s; T )  = O(ls/-’)). We can now conclude that both sides of 
(3.26) vanish as IsI+m. This is why we had to make K+(s)  behave like a power of s at 
infinity, and define y+(s;  T )  by (A2.23). 

Appendix 3 

We wish to find an asymptotic expansion, as q + +CO, for the function 

(A3.1) 
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where 

qm = ( m  + a’)’”, (A3.2) 

Q ( q )  = [ ( q 2 -  a’)!I”’y+(iq; a’), (A3.3) 

a(q)=(q-.)q2-a2-l exp(aq -+q2 + + a 2 ) [ ( q 2  - a’) !I-’/’, (A3.4) 

b ( q )  = (q+a)q2-u2-1  exp(-aq -tq’++a’)[(q’ - a’)!]-’”. (A3.5) 

The asymptotic expansions, as q + +a, of these latter functions are 

u(q)  - ( 2 ~ ) - ” ~ q - ~ / ’  e x p ( ~ , + ~ , ) ,  

b ( q ) -  ( 2 ~ ) - ’ ” q - ~ ’ ’  exp(-Z,+Z2), 

(A3.6) 

(A3.7) 

(A3.8) 

(A3.9) 

(A3.10) 

(A3.11) 

(A3.12) 

Then from (A3.6)-(A3.8) we may obtain asymptotic expansions for these functions 

00 

c(  q )  - c Crq“-5”, 
r = O  

m 

d (  q )  - Drq-‘-5/2, 
r = O  

(A3.13) 

(A3.14) 

and we note that 

c, = (-1)r2TDp (A3.15) 

Now the sum appearing in (A3.1) can be written 

(A3.16) 

Consider now the function 

( A3.17) 
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For 141 < a this function is regular, with the Taylor expansion 
cc 

4 q )  = c l [ : + l s ,  a21(-4)”, 
s = o  

( A3.18) 

and it may be analytically continued to give a function which is regular in the right 
half of the q plane 

c+im I r [ [ $ + $ s ,  a’] 
c(q) = -- q s  ds ( - f < c < O ) .  (A3.19) 

21ri ‘ I  c-im sin T S  

Then the asymptotic expansion of a(q) ,  as q + +CO, is obtained as the sum of the 
residues of the integrand lying to the left of the contour, that is 

(A3.20) 

Hence we have obtained 

I; (dmqL-I;l=l Dr-,q~~-,-”’)+Zi=1 D,-,[[i-fs; a’] 
+ ( - l ) r  

q‘+’ 

+ 0 ( ~ - r - 3 / 2 ) .  ( A3.2 1 ) 

Using (A3.151, the first bracketed expression on the right-hand side of (A3.21) is 
recognised as the beginning of the asymptotic expansion for qc( q ) .  It therefore follows 
that 

(A3.22) 

where 
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